Studies on Furan Derivatives. XII. (1) Nucleophilic Substitution of Methyl 5-Nitro-2-furancarboxylate. Preparation of Methyl 5-Phenoxy-2-furancarboxylates.

Akira Tanaka*, Toshinao Usui, and Masaji Shimadzu

Faculty of Pharmaceutical Sciences, Josai University, Sakadoshi, Saitama 350-02, Japan Received March 2, 1981

Twenty one methyl 5-phenoxy-2-furancarboxylates prepared from the reaction of methyl 5-nitro-2-furancarboxylate with phenoxides via displacement of the nitro group. In the reaction of potassium 2-nitrophenoxide with methyl 5-nitro-2-furancarboxylate at 110°-120°, 2,2'-dinitrodiphenyl ether was obtained as a main product.

J. Heterocyclic Chem., 18, 1241 (1981).

Recently, it was found that the nucleophilic substitution of 5-nitro-2-furancarbaldehyde by phenoxide ions easily gave 5-phenoxy-2-furancarbaldehydes (2).

In the continuous work, we now provide the first examples of the preparation of methyl 5-phenoxy-2-furancar-boxylates (3) by the replacement of the nitro group with a phenoxyl group on methyl 5-nitro-2-furancarboxylate. There are no reports on such a nucleophilic displacement processes involving 5-nitro-2-furancarboxylates (4,5).

Scheme

When a mixture of methyl 5-nitro-2-furancarboxylate, phenoxides, and dimethyl sulfoxide was heated at 80-90° for 10 hours, methyl 5-phenoxy-2-furancarboxylates (Ia-u) were formed in good yields. The structures of Ia-u were assigned by their elemental analysis and spectral data as shown in Table I and II. In the reaction with potassium 2-nitrophenoxide, 2,2'-dinitrodiphenyl ether (II) was obtained as a by-product. Also, when the reaction temperature was elevated at 110-120°, mainly II was produced. The structure of II was assigned with the specimen prepared from the reaction of potassium 2-nitrophenoxide with 2-chloronitrobenzene by Randall's method (6).

However, the mechanism of the formation of II in this reaction is at present unknown.

Thus, it was established that the reaction of methyl 5-nitro-2-furancarboxylate with phenoxides gives methyl 5-phenoxy-2-furancarboxylates in which the substituent on the benzene ring can be varied by the electronic character from nitro to methoxyl group. These results are similar to a series of the reaction with 5-nitro-2-furancarbaldehyde (2). It is proposed that compounds Ia-u may be utilized as important starting materials from which derive further derivatives.

EXPERIMENTAL

All melting points and boiling points are uncorrected. Infrared spectra were recorded using a Jasco IRA-1 spectrophotometer. Nuclear magnetic resonance spectra were recorded on JEOL JNM-60HL and PS-100 spectrophotometers with tetramethylsilane as an internal standard. Mass spectra were obtained (direct inlet) on a Shimadzu LKB-900 instrument. Sodium hydride (50%) was purchased from Wako Chemical Industry, LTD.

Methyl 5-Phenoxy-2-furancarboxylates (Ia-u).

A.

A mixture of potassium phenoxides (0.07 mole), 10 g (0.058 mole) of methyl 5-nitro-2-furancarboxylate, and 100 ml of dimethyl sulfoxide was heated at 80-90° for 10 hours under stirring. After cooling, the mixture was poured into ice-water. The produced precipitate was filtered and recrystallized from suitable solvents to give Ia-c,i, respectively.

В

A mixture of potassium phenoxides (0.07 mole), 10 g (0.058 mole) of methyl 5-nitro-2-furancarboxylate, and 100 ml of dimethyl sulfoxide was heated at 80-90° for 10 hours under stirring. After cooling, the mixture was poured into ice-water. The oil produced was extracted with benzene. The benzene extract was washed with 5% potassium hydroxide solution and water, dried over calcium chloride, and evaporated. The residual oil was distilled under vacuum to give Ig,j,o,r,s,u, respectively.

Ċ.

To a solution of phenols (0.07 mole) in 100 ml of dimethyl sulfoxide was added 3.4 g. (0.14 mole) of 50% sodium hydride under vigourous stirring. To the above mixture was added 10 g. (0.058 mole) of methyl

Table I

Methyl 5-Phenoxy-2-furancarboxylates

						Analysis		
Compound		Yield	Bp (°C)/torr				Cal	cd. (Found)
No.	R	(%)	or Mp (°C)	Recrystallization	Formula	С	Н	N
Ia	2-NO ₂	33	100-102	MeOH	C ₁₂ H ₉ NO ₆	54.76	3.54	5.32
						(54.63	3.61	5.21)
Ib	3-NO ₂	78	118-119	MeOH	C12H9NO6	54.76	3.54	5.32
						(54.76	3.69	5.36)
Ic	4-NO ₂	42	144-146	MeOH	C12H9NO6	54.76	3.54	5.32
						(54.80	3.59	5.06)
Id	2-COOCH ₃	52	185/2	••••	$C_{14}H_{12}O_{6}$	60.87	4.38	
						(60.70	4.32)	
Ie	3-COOCH ₃	65	79-81	Petroleum benzin	$C_{14}H_{12}O_6$	60.87	4.38	
						(61.04	4.53)	
If	4-COOCH ₃	84	92-94	Petroleum benzin	$C_{14}H_{12}O_{6}$	60.87	4.38	
						(60.69	4.57)	
Ig	2-Cl	74	177-178/6.5		C12H9ClO6	57.05	3.59	
						(57.19	3.67)	
Ih	3-C1	74	55-57	Petroleum benzin	C12H9ClO6	57.05	3.59	
					a a.a	(57.00	3.61)	
Ii	4-Cl	78	68-69	Petroleum benzin	C12H9ClO6	57.05	3.59	
					0.11.0	(57.08	3.73)	
Ij	Н	75	150-151/4		$C_{12}H_{10}O_4$	66.05	4.62	
				_	C 11 NO	(66.21	4.79)	4.00
Ik	3-NHCOCH ₃	50	94-96	Benzene	$C_{14}H_{13}NO_5$	61.09	4.76	4.90
			100 105	n	C II NO	(61.00	4.70	5.23)
Il	4-NHCOCH ₃	81	133-135	Benzene	C,4H,3NO5	(61.06 68.28	4.81 5.73	4.84)
Im	2-C ₂ H ₅	80	163-165/5		$C_{14}H_{14}O_{4}$	(68.15	5.73 5.53)	
-	2.0 11	50	160/3		$C_{14}H_{14}O_{4}$	68.28	5.73	
In	3-C ₂ H ₅	59	100/3	••••	G14H14U4	(68.47	5.73	
Ιο	4-C ₂ H ₅	69	159-161/3		$C_{14}H_{14}O_{4}$	68.28	5.73	
10	4-G ₂ Π ₅	09	139-101/3		G14111404	(68.20	5.81)	
Ip	2-CH ₃	85	147-148/3.5		$C_{13}H_{12}O_4$	72.21	5.59	
1p	2-0113	00	141-140/0.0		013111204	(72.11	5.56)	
Ιq	3-CH ₃	70	156-157/4		$C_{13}H_{12}O_4$	(72.34	5.47)	
Ir	4-CH ₃	74	156/3.5	****	$C_{13}H_{12}O_4$	72.21	5.59	
11	-GII3	• •	100/0.0		013111204	(72.05	5.44)	
Is	2-OCH ₃	81	173-174/4	****	$C_{13}H_{12}O_5$	62.90	4.87	
10	200113	0.	110 111.7		-1312-3	(62.61	5.06)	
It	3-OCH ₃	57	173/3.5		C13H12O5	62.90	4.87	
						(63.02	5.12)	
Iu	4-OCH ₃	53	175-177/3	****	C13H12O5	62.90	4.87	
	5					(62.67	5.09)	

solution and water, dried over calcium chloride, and evaporated down. The residual oil was distilled two times under vacuum to give Id,m,n,p,q,t, respectively.

D.

To a solution of phenols (0.07 mole) in 100 ml of dimethyl sulfoxide was added 3.4 g (0.14 mole) of 50% sodium hydride under vigorous stirring. To an above mixture was added 10 g (0.058 mole) of methyl 5-nitro-2-furancarboxylate, and heated at 80-90° for 10 hours under stirring, then poured into ice-water. The produced oil was extracted with benzene. The benzene extract was washed with 5% potassium hydroxide solution and water, dried over calcium chloride, and evaporated down. The residual oil was distilled two times under vacuum to give Id,m,n,p,q,t, respectively.

2,2'-Dinitrodiphenyl Ether (II).

A mixture of 12.4 g (0.07 mole) of potassium 2-nitrophenoxide, 10 g (0.058 mole) of methyl 5-nitro-2-furancarboxylate, and 100 ml of dimethyl sulfoxide was heated at 110-120° for 5 hours. After cooling, the mixture was poured into ice-water and extracted with benzene. The benzene extract was washed with 5% potassium hydroxide solution and water, dried over calcium chloride, and evaporated down. The residue was recrystallized from methol to give 5.3 g of II as yellow prisms, mp 120-122°; ir (nujol): ν max 1340, 1515 cm⁻¹ (NO₂); ms:m/e 260 (M*); nmr (deuterioacetone): δ 7.10-8.25 (m).

Anal. Calcd. for C₁₂H₈N₂O₅: C, 55.39; H, 3.10; N, 10.77. Found: C, 55.67; H, 3.10; N, 10.77.

This compound was identified by a mixed melting point test and various spectral comparison with II prepared by Randall's method (6).

Table II

Methyl 5-Phenoxy-2-furancarboxyletes

Compound No.	MS m/e (M*)	IR ν Max (nujol) Cm ⁻¹ for C=0	NMR (a) δ (deuteriochloroform)
Ia	(b)	1720	3.76 (3H, s, CH ₃), 5.89 (1H, d, J = 3.8 Hz, F-4H), 7.27 (1H, d, J = 3.8 Hz, F-3H), 7.40 -8.20 (4H, m, phenyl H)
Ib	263	1720	3.84 (3H, s, CH ₃), 5.78 (1H, d, $J = 3.8$ Hz, F-4H), 7.19 (1H, d, $J = 3.8$ Hz, F-3H, 7.10 -8.10 (4H, m phenyl H)
Ic	263	1720	3.88 (3H, s, CH_3), 5.87 (1H, d, $J = 3.8$ Hz, F-4H), 7.21 (1H, d, $J = 3.8$ Hz, F-3H), 7.19 (2H, d, $J = 9$ Hz, phenyl H), 8.23 (2H, d, $J = 9$ Hz, phenyl H)
Id	276	1720 (broad)	3.83 (6H, s, CH ₃ x 2), 5.42 (1H, d, $J = 3.8$ Hz, F-4H), 7.13 (1H, d, $J = 3.8$ Hz, F-3H), $7.00-8.05$ (4H, m, phenyl H)
Ie	276	1720 (broad)	3.87 (3H, s, CH ₃), 3.92 (3H, s, CH ₃), 5.62 (1H, d, $J = 3.8$ Hz, F-4H), 7.15 (1H, d, $J = 3.8$ Hz, F-3H), 7.10-8.00 (4H, m, phenyl H)
If	276	1730	3.87 (3H, s, CH ₃), 3.91 (3H, s, CH ₃), 5.72 (1H, d, J = 3.8 Hz, F-4H), 7.17 (1H, d, J = 3.8 Hz, F-3H), 7.10 (2H, d, J = 9 Hz, phenyl H), 8.03 (2H, d, J = 9 Hz, phenyl H)
Ig	252	1720	3.87 (3H, s, CH ₃), 5.49 (1H, d, J = 3.8 Hz, F-4H), 6.90 - 7.65 (5H, m, F-3H and phenyl H)
Ih	252	1720	3.87 (3H, s, CH ₃), 5.63 (1H, d, J = 3.8 Hz, F-4H), 6.80 - 7.50 (5H, m, F-3H and phenyl H)
Ii	252	1710	3.80 (3H, s, CH ₃), 5.47 (1H, d, J = 3.8 Hz, F-4H), 7.00 (1H, d, J = 3.8 Hz, F-3H), 6.94 (2H, d, J = 9 Hz, phenyl H)
Ij 	218	1730	3.83 (3H, s, CH ₃), 5.51 (1H, d, $J = 3.8$ Hz, F-4H), 6.90 - 7.52 (5H, m, F-3H and phenyl H)
Ik	275	1665, 1720	2.12 (3H, s, CH ₃), 3.85 (3H, s, CH ₃), 5.57 (1H, d, J = 3.8 Hz, F-4H), 6.70-7.50 (5H, m, F-3H and phenyl H), 8.13 (1H, broad s, NH)
II	275	1670, 1720	2.09 (3H, s, CH ₃), 3.82 (3H, s, CH ₃), 5.46 (1H, d, J = 3.8 Hz, F-4H), 7.12 (1H, d, J = 3.8 Hz, F-3H), 7.05 (2H, d, J = 9 Hz, phenyl H), 7.50 (2H, d, J = Hz, phenyl H), 8.20 (1H, broad s, NH)
Im	216	1730	1.20 (3H, t, $J = 7.5$ Hz, CH_3), 2.69 (2H, q, $J = 7.5$ Hz, CH_2), 3.83 (3H, s, CH_3), 5.33 (1H, d, $J = 3.8$ Hz, F-4H), 6.80-7.50 (5H, m, F-3H and phenyl H)
In	246	1730	1.21 (3H, t, $J = 7.5$ Hz, CH_3), 2.63 (2H, q, $J = 7.5$ Hz, CH_2), 3.82 (3H, s, CH_3), 5.50 (1H, d, $J = 3.8$ Hz, F-4H), 7.13 (1H, d, $J = 3.8$ Hz, F-3H), 6.80-7.50 (4H, m, phenyl H)
Io	246	1730	1.35 (3H, t, $J = 7.5$ Hz, CH_3), 2.65 (2H, q, $J = 7.5$ Hz, CH_2), 3.85 (3H, s, CH_3), 5.47 (1H, d, $J = 3.8$ Hz, F-4H), 6.90-7.40 (5H, m, F-3H and phenyl H)
Ip	232	1725	2.27 (3H, s, CH ₃), 3.83 (3H, s, CH ₃), 5.32 (1H, d, $J = 3.8$ Hz, F-4H), 6.90-7.50 (5H, m, F-3H and phenyl H)
Iq	232	1730	2.34 (3H, s, CH ₃), 3.84 (3H, s, CH ₃), 5.58 (1H, d, $J = 3.8$ Hz, F-4H), 7.12 (1H, d, $J = 3.8$ Hz, F-3H), 6.80-7.50 (4H, m, phenyl H)
Ir	232	1730	2.30 (3H, s, CH ₃), 3.83 (3H, s, CH ₃), 5.45 (1H, d, $J = 3.8$ Hz, F-4H), 6.80-7.35 (5H, m, F-3H and phenyl H)
Is	248	1720	3.78 (6H, s, CH ₃ x 2), 5.30 (1H, d, J = 3.8 Hz, F-4H), 7.10 (1H, d, J = 3.8 Hz, F-3H), $6.70.7.40$ (4H, m, phenyl H)
It	248	1720	3.73 (3H, s, CH ₃), 3.80 (3H, s, CH ₃), 5.57 (1H, d, J = 3.8 Hz, F-4H), 7.10 (1H, d, J = 3.8 Hz, F-3H), 6.50 - 6.80 and 7.10 - 7.43 (4H, m, phenyl H)
Iu	248	1730	3.72 (3H, s, CH ₃), 3.82 (3H, s, CH ₃), 5.37 (1H, d, J = 3.8 Hz, F-4H), 7.09 (1H, d, J = 3.8 Hz, F-3H), $6.70-7.20$ (4H, m, phenyl H)

(a) s: singlet, d: doublet, t: triplet, q:quartet, m: multiplet, F: furan ring. (b) Molecular ion peak was not observed.

${\bf Acknowledgement.}$

The authors are greatly indebted to all the staff of central analytical center of this university for elemental analysis and spectral measurements.

REFERENCES AND NOTES

- (1) Part XI of this series; T. Usui, J. Pharm. Soc. Japan, 101, 90
- (2) A. Tanaka, T. Usui, and M. Shimadzu, Chem. Pharm. Bull., 28,

Notes

2846 (1980).

(3) A few other 5-phenoxy-2-furancarboxylates were prepared from 5-bromo-2-furancarboxylates see D. G. Manly and E. D. Amstutz, J. Org. Chem., 21, 516 (1956); Y. Yahama and T. Shono, Japanese Patent 2373, Mar. 17, (1960); Chem. Abstr., 54, 21128i (1960); A. F. Oleinik, K. Y. Wovitskii, L. V. Gus'kova, G. N. Pershin, A. I. Kravchenko, and V. A. Chernov, Khim. Farm. Zh., 10, 65 (1976); Chem. Abstr., 85, 142934m (1976).

- (4) The radical displacement of the nitro group on methyl 5-nitro-2-furancarboxylate by methyl has been reported; see U. Rudqvist and K. Torssell, *Acta Chem. Scand.*, 25, 2183 (1971).
- (5) Literature on the nucleophilic substitution of other nitrofurans has been introduced in reference 1.
- (6) J. J. Randall, C. E. Lewis, and P. M. Slagan, J. Org. Chem., 27, 4098 (1962).